Literature Review: Comparison of K-Means and Fuzzy C-Means Algorithms in Clustering Analysis

Authors

  • Jaelani Universitas Pelita Bangsa
  • Octaviana Pelita Bangsa University
  • Elkin Rilvani Pelita Bangsa University

Keywords:

studi literatur, algoritma k-means, fuzzy c-means, analisis clustering

Abstract

The increasing volume and complexity of data across sectors such as healthcare, business, education, and security necessitates analytical methods capable of handling uncertainty and structural variability. One widely used approach is clustering, which groups data based on similarity. Two commonly applied algorithms are K-Means and Fuzzy C-Means (FCM), each with distinct characteristics: K-Means applies hard clustering, while FCM adopts soft clustering using degrees of membership. This study presents a literature review of 12 national scientific journals that implemented both algorithms in contexts such as employee performance evaluation, patient classification, spatial disease analysis, and customer segmentation. The findings show that algorithm selection depends heavily on data characteristics and analytical objectives. K-Means excels in computational efficiency and interpretability, while FCM offers greater flexibility for modeling complex data. Several studies also suggest that combining both algorithms can enhance clustering accuracy and robustness. Thus, this review is expected to serve as both an academic and practical reference in selecting appropriate clustering methods.

Keywords: Clustering, K-Means, Fuzzy C-Means, Literature Review, Data Analysis.

References

Adelia, I. M. (2023). Clustering data imunisasi dengan FCM. Jurnal Sistem Informasi Kesehatan.

Aina, S. F., & rekan. (2021). Clustering wilayah rawan kriminalitas dengan FCM. Jurnal Ilmu Komputer.

Amalia, R. (2021). Identifikasi persebaran kasus COVID-19 menggunakan K-Means. Jurnal Kesehatan Digital.

Andika, D. S. (2022). Evaluasi kinerja pegawai swasta menggunakan clustering. Jurnal Teknologi Informasi.

Anissa, E. P. (2021). Clustering kinerja pegawai menggunakan Fuzzy C-Means. Jurnal Sains dan Teknologi.

Akim, K. R., & rekan. (2023). Clustering status gizi balita menggunakan K-Means dan FCM. Jurnal Ilmiah Komputer.

Franklyn, & Nataliani. (2022). Analisis performa pemain basket dengan K-Means dan FCM. Jurnal Statistika.

Hamdi, S., & rekan. (2023). Perbandingan K-Means dan Fuzzy C-Means pada data pelanggan. Jurnal Teknologi Informasi.

Mega, S., & Wulandari, N. (2020). Clustering wilayah penyakit TBC. Jurnal Kesehatan Masyarakat.

Nirmalasari, & rekan. (2023). Klasifikasi jenis obat dengan K-Means. Jurnal Informatika dan Komputer.

Pradana, P., & rekan. (2021). Sistem pendukung keputusan investasi dengan clustering. Journal of Information System.

Teguh, T., & Putri, Y. E. (2021). Deteksi diabetic retinopathy dengan fuzzy dan algoritma genetik. Jurnal Diagnostik Digital.

Ma, H., Zhang, X., & Li, J. (2021). A review on clustering methods and applications. Journal of Big Data.

Shahapure, K. R., & Nicholas, C. (2020). Cluster quality analysis using silhouette score.

Abirami, S., & Chitra, R. (2021). A review on fuzzy c-means clustering algorithm for medical image segmentation.

Arora, S., Varshney, S., & Yadav, P. (2020). Performance evaluation of K-means and fuzzy C-means clustering

Shahapure, K. R., & Nicholas, C. (2020). Cluster quality analysis using silhouette score.

Abirami, S., & Chitra, R. (2021). A review on fuzzy c-means clustering algorithm for medical image segmentation.

Ma, H., Zhang, X., & Li, J. (2021). A review on clustering methods and applications. Journal of Big Data.

Downloads

Published

2025-08-25

How to Cite

Jaelani, Octaviana, & Elkin Rilvani. (2025). Literature Review: Comparison of K-Means and Fuzzy C-Means Algorithms in Clustering Analysis. Journal of Computer Science and Technology (JCS-TECH), 5(2), 52–58. Retrieved from https://journalunwidha.com/index.php/jcstech/article/view/382

Issue

Section

Articles